Photoenhancement of Luminescence in Colloidal CdSe Quantum Dot Solutions
نویسندگان
چکیده
Enhancement of the photoluminescence (PL) of colloidal CdSe and (core)shell (CdSe)ZnS quantum dots has been observed when the dots are illuminated above the band-gap energy. The effect occurs in dots suspended in a variety of organic or aqueous environments. During periods of constant illumination, the exciton PL quantum yield was found to reach a value of up to 60 times that of the solution of as-prepared quantum dots and, if illumination continued, subsequently declined slowly because of photooxidation. When returned to the dark, the PL reverted to near its original value. The rate and magnitude of photoenhancement are found to depend on the illumination wavelength, the presence of a ZnS shell, the solvent environment, and the concentration of surfactant molecules. Time-resolved measurements of the fluorescence decay reveal multiexponential kinetics and an average lifetime that lengthens during the illumination period and shortens when quantum dots are returned to darkness. It is postulated that the stabilization of surface trap states, lengthening their average lifetime, could occur by a light-activated rearrangement of surfactant molecules, thus increasing the probability of thermalization back to the lowest emitting exciton state and enhancing the quantum dot PL.
منابع مشابه
Competition between zero-phonon and phonon-assisted luminescence in colloidal CdSe quantum dots
متن کامل
Power and Wavelength Dependence of Photoenhancement in (CdSe)ZnS-Dopamine in Aqueous Solution and Live Cells
(CdSe)ZnS-Dopamine. Photoluminescence. Photoenhancement. Living Cell CdSe(ZnS) quantum dots conjugated to the electron donor dopamine show enhancement of photoluminescence over a time course of seconds to minutes when exposed to ultraviolet or blue irradiation. This phenomenon is observed when the dots are in aqueous solution as well as after endocytosis by living cells. The rate of enhancement...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کاملWhite light generation by resonant nonradiative energy transfer from epitaxial InGaN/GaN quantum wells to colloidal CdSe/ZnS core/shell quantum dots
We propose and demonstrate white-light-generating nonradiative energy transfer (ET) from epitaxial quantum wells (QWs) to colloidal quantum dots (QDs) in their close proximity. This proof-of-concept hybrid colorconverting system consists of chemically synthesized red-emitting CdSe/ZnS core/shell heteronanocrystals intimately integrated on epitaxially grown cyanemitting InGaN/GaN QWs. The white ...
متن کاملIntroducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009